
Software Engineering

and Architecture

Systematic Testing

Equivalence Class Partitioning

What is reliability?

• If there is a defect, it may fail and is thus not reliable.

• Thus:

– Reduce number of defects

– … will reduce number of failures

– … will increase reliability

CS@AU Henrik Bærbak Christensen 2

Discussion

• True?

– Find example of removing a defect does not increase the

system’s reliability at all

– Find example of removing defect 1 increase reliability

dramatically while removing defect 2 does not

CS@AU Henrik Bærbak Christensen 3

All defects are not equal!

• So – given a certain amount of time to find defects (you

need to sell things to earn money!):

• What kind of defects should you correct to get best return

on investment?

CS@AU Henrik Bærbak Christensen 4

Example

• Firefox has an enormous amount of possible

configurations! Imagine testing all possible combinations!

• Which one would you

test most thoroughly?

CS@AU Henrik Bærbak Christensen 5

Testing Techniques

CS@AU Henrik Bærbak Christensen 6

One viewpoint

• The probability of defects is a function of the code

complexity. Thus we may identify (at least) three different

testing approaches:

– No testing. Complexity is so low that the test code will become

more complex or longer. Example: set/get methods

– Explorative testing: “gut feeling”, experience. TDD relies heavily

on ‘making the smart test case’ but does not dictate any method.

CS@AU Henrik Bærbak Christensen 7

Destructive!

• Testing is a destructive process!!!

– In contrast to almost all other SW processes which are

constructive!

• Human psychology

– I want to be a success

• The brain will deliver!

– (ok, X-factor shows this is not always the case…)

• I will prove my software works

• I will prove my software is really lousy

CS@AU Henrik Bærbak Christensen 8

Morale:

• When testing, reprogram your brains

• I am a success if I find a defect.

The more I find, the better I am!

CS@AU Henrik Bærbak Christensen 9

Our focus

• There are a lot of different testing techniques.

• Types:

• In our course – two black box techniques:

– Equivalence class partitioning (EC)

– Boundary value analysis (which is actually associated with EC)
CS@AU Henrik Bærbak Christensen 10

Equivalence Class Partitioning

Often just called EC testing…

Consider

• Math.abs(x): Absolute value of x;

– Examples: abs(-2) = 2; abs(7) = 7;

– If x is not negative, return x.

– If x is negative, return the negation of x.

• Will these five test cases ensure a reliable

implementation?

CS@AU Henrik Bærbak Christensen 12

Two problems

• A) what is the probability

that x=38 will find a

defect that x=37 did not

expose?

• B) what is the probability

that there will be a defect

in handling negative x?

CS@AU Henrik Bærbak Christensen 13

Core insight

• We can find a single input value that represents a large

set of values when it comes to finding defects!

• So – we only need one test case representing that set
CS@AU Henrik Bærbak Christensen 14

An EC is a (sub)set of all inputs.
Da: Delmængde

For Math.abs

• ECs are subsets of the full input set.

+37

-42

+39

-92431523

EC-1 EC-2

X = - 42 | 42

CS@AU Henrik Bærbak Christensen 15

The argumentation

• The specification will force an implementation where

(most likely!) all positive arguments are treated by one

code fragment and all negative arguments by another.

– Thus we only need two test cases:

• 1) one that tests the positive argument handling code

• 2) one that tests the negative argument handling code

• For 1) x=37 is just as good as x=1232, etc. Thus we

simply select a representative element from each EC and

generate a test case based upon it.

CS@AU Henrik Bærbak Christensen 16

Note

• Systematic testing ...

• does not mean

– Systematically find all defects and guaranty none are left!!!

• If you need proofs, you need my colleagues research ☺

• does mean

– Systematically derive a small set of test cases with high

probability of finding many defects!!!

CS@AU Henrik Bærbak Christensen 17

Specifically

• Systematic testing cannot in any way counter malicious

programming

– Virus, easter eggs, evil-minded programmers

– (really really incompetent programmers)

CS@AU Henrik Bærbak Christensen 18

A Sound EC partitioning

• For our ECs to be sound:

• Exercise

– Why the word ‘assumed’ in the above statement?

• Why not ‘guarantied’ ?

CS@AU Henrik Bærbak Christensen 19

Exercise

• Coverage? Representation?

+37

-42

+39

-92431523

EC-1 EC-2

CS@AU Henrik Bærbak Christensen 20

Exercise

• The classic blunder at exams!

– Representation = two values from the same EC will result in the

same behaviour in the algorithm

• Argue why this is completely wrong!

– Consider for instance the Account class’ deposit method…

• account.deposit(100);

• account.deposit(1000000);

CS@AU Henrik Bærbak Christensen 21

SideBar

• Open.kattis // Exercise International Dates

• 109 test cases for

five lines of code???

• My analysis:

– 3 test cases is enough!

CS@AU Henrik Bærbak Christensen 22

Documenting ECs

• Math.abs is simple. Thus the ECs are simple.

• This is often not the case! Finding ECs requires deep

thinking, analysis, and iteration.

• Document them!

• Equivalence class table:

CS@AU Henrik Bærbak Christensen 23

Label the EC

Invalid/Valid ECs

• Some input values make an algorithm give up, bail out,

throw exception, or compute answer immediately:

– file.open(“nonexisingfile”);

– game.usePower(FINDUS) (and findus mana =0)

• Input values that leads to abnormal processing/bail out,

we classify as belonging to invalid ECs.

• Those input values that process normally/all the way, we

say belong to valid ECs.

– Those cases where the ‘method is run to conclusion’

CS@AU Henrik Bærbak Christensen 24

Finding the ECs

Often tricky…

Reality

Example: Backgammon move validation

– validity = v (move, player, board-state, die-

value)

• is Red move (B1-B2) valid on this board given

these die values and this player in turn?

– Problem:

• multiple parameters: player, move,

board, die

• complex parameters: board state

• coupled parameters: die couples to move!

– EC boundary is not a constant!

CS@AU Henrik Bærbak Christensen 26

A process

• To find the ECs you will need to look carefully at the

specification and especially all the conditions

associated.

– Conditions express choices in our algorithms and therefore

typically defines disjoint algorithm parts!

• If (expr) {} else {}
– And as the test cases should at least run through all parts of the

algorithms, it defines the boundaries for the ECs.

• … And consider typical programming techniques

– Will a program contain if’s and while’s here?

CS@AU Henrik Bærbak Christensen 27

Partitioning Heuristics

• 1) If you have a range of values specification

– make three ECs:

• [1] in range valid

• [2] above range invalid

• [3] below range invalid

• Ex. Standard chess notation/ is “a8” or “x17”

valid positions?

– Column range: a-h; Row range: 1-8

CS@AU Henrik Bærbak Christensen 28

Partitioning Heuristics

• 2) If you have a set, S, of values specification

– make |S|+1 ECs

• [1] .. [|S|] one EC for each member in S valid

– Each with only that particular member in the set

• [|S|+1 for a value outside S invalid

• Ex. PayStation accepting coins

– Set of {5, 10, 25} cents coins

– Note: Not just two sets!

CS@AU Henrik Bærbak Christensen 29

Partitioning Heuristics

• 3) If you have a boolean condition specification

– make two ECs

• Ex. the first character of identifier must be a letter

• the object reference must not be null

– you get it, right?☺

CS@AU Henrik Bærbak Christensen 30

Partitioning Heuristics

• 4) If you question the representation property of any EC,

then repartition!

– Split EC into smaller ECs

• Examples: shortly ☺

CS@AU Henrik Bærbak Christensen 31

From ECs to Test cases

Test case generation

• For disjoint ECs you simply pick an element from each

EC to make a test case.

• Document in a Extended test case table

• Augmented with a column showing which ECs are

covered!

CS@AU Henrik Bærbak Christensen 33

Usual case

• ECs are seldom disjoint – so you have to combine them

to generate test cases.

• Ex. Chess board validation

CS@AU Henrik Bærbak Christensen 34

Combinatorial Explosion

• Umph! Combinatorial explosion of test cases .

• Ex.

– Three independent input parameters foo(x,y,z)

– Four ECs for each parameter

• That is:

– x’s input set divided into four ECs,

– y’s input set divided into four ECs,

• etc.

• Question:

– How many test cases?

CS@AU Henrik Bærbak Christensen 35

Combinatorial Explosion

• Answer: 43 = 64 test cases…

• TC1: [ECx1],[ECy1],[ECz1]

• TC2: [ECx1],[ECy1],[ECz2] …

• TC4: [ECx1],[ECy1],[ECz4] …

• TC5: [ECx1],[ECy2],[ECz1] …

• TC9: [ECx1],[ECy3],[ECz1] …

• …

• TC64: [ECx4],[ECy4],[ECz4]

CS@AU Henrik Bærbak Christensen 36

Myers’ Heuristics

• Often, it is better to generate test cases like this:

Rule 2

Rule 1
CS@AU Henrik Bærbak Christensen 37

Why Rule 2?

• Due to masking

– One correct test masks a later incorrect test

• Ex.

• Test case (‘ ‘,0) will pass which is expected

– Code deemed correct, but this is a wrong conclusion!

• It was the ‘column’ test that returned ‘false’ so the defect in the row

conditions is masked
CS@AU Henrik Bærbak Christensen 38

assertThat(b.valid(‘ ‘,0)), is(false));

Why Rule 1?

• You may combine as many valid ECs as possible and

cover it with only a single test case until all valid ECs are

exhausted…

• Why?

• Because I must assume that all elements from ECs are

used to compute the final result. Any defects will thus

most likely show up even if the defect only relate to one

element.

• Ex. bankdayNumberInYear(int month, int day)

– return 30*month+day

Jan = 1; Feb = 2

CS@AU Henrik Bærbak Christensen 39

The Process

The Summary

Revisited…

5. Review the generated test cases carefully to find what you missed

– and iterate!

CS@AU Henrik Bærbak Christensen 41

An Example

Phew – let’s see things in practice

Example

CS@AU Henrik Bærbak Christensen 43

Exercise

• Which heuristics to use on the spec?

CS@AU Henrik Bærbak Christensen 44

Process step 1

• Result

CS@AU Henrik Bærbak Christensen 45

Process step 2

• Review and consider representation property?

CS@AU Henrik Bærbak Christensen 46

Damn – Leap years!

• Nice to be an astronomer ☺

• What about the months? Let’s play it safe…

(as before)

CS@AU Henrik Bærbak Christensen 47

Process step 3

• Coverage?

CS@AU Henrik Bærbak Christensen 48

• Generate, using Myers rule 1 and rule 2

• Conclusion: Only 8 test cases for a rather tricky alg.

Process step 4

CS@AU Henrik Bærbak Christensen 49

Example 2

Formatting

• Note! Most of the conditions do not really talk about x but

on the output.

• Remember: Conditions in the specs!!!

CS@AU Henrik Bærbak Christensen 51

Exercise

• What do we do?

• Range? Boolean? Set?

• Valid / Invalid ECs?

CS@AU Henrik Bærbak Christensen 52

My analysis

CS@AU Henrik Bærbak Christensen 53

0.0 <= x < 1000.0 [a3]
range

boolean

set

set

Test cases

CS@AU Henrik Bærbak Christensen 54

Process Recap

CS@AU Henrik Bærbak Christensen 55

Process Recap

CS@AU Henrik Bærbak Christensen 56

Process Recap

CS@AU Henrik Bærbak Christensen 57

Process Recap

CS@AU Henrik Bærbak Christensen 58

Process Recap

CS@AU Henrik Bærbak Christensen 59

Process Recap

CS@AU Henrik Bærbak Christensen 60

Often, Alternative Analysis Possible

• I used ‘set’ heuristics to divided the ‘prefixed 0’ ECs

• A range heuristics could be applied just as well

– Condition

• Whole part of decimal number x, let call it w

– Intervals

• w in [100..999] [b1]

• w in [10..99] [b2]

• w in [1..9] [b3]

• w is [0] [b4]

• (Note: all these are VALID ECs)

• Will lead to the exact same test cases…

CS@AU Henrik Bærbak Christensen 61

Computations

“Code without if’s”

… also requires some care

Computation Heuristics

• Computations have their own pitfalls: 0 and 1

CS@AU Henrik Bærbak Christensen 63

Example

• Specification:

• But: No conditions =>

– Myers analysis will give only one test case =>

• Could just be a = x = b =0

• Thus will not detect that the function below is wrong!

CS@AU Henrik Bærbak Christensen 64

Example

• Specification:

• Our computation

heuristics thus leads to:

• Testcase: a=7; x= 3; b=9 => output = 30.
CS@AU Henrik Bærbak Christensen 65

Note: the neutral
element ECs need not

be tested at all!

Computation Heuristics

• Example/Hint – SigmaStone attacks with field support

• +1 for every friendly minion of same class

– Range [0..4] + >= 5

– Implementation 1:

• Value = attackStrength + sumOfFriendlyOfSameClass();

– Implementation 2:

• Value = attackStrength; // missed the summation here

• Picking 0 as representative element is problematic!

CS@AU Henrik Bærbak Christensen 66

Boundary value analysis

CS@AU Henrik Bærbak Christensen 67

Boundary value analysis

• Experience shows that test cases focusing on boundary

conditions have high payoff.

• Some that spring into my mind are

– ”off by one” errors in comparisons

• if (x <= MAX_SIZE) and not if (x < MAX_SIZE)

– null as value for a reference/pointer

CS@AU Henrik Bærbak Christensen 68

Complements EP analysis

• Ex. Formatting has a strong boundary between

EC [a1] and [a2]

– 0.0 (-> ‘000.00’) and -0.000001 (-> ‘---.--’)

• It is thus very interesting to test x=0.0 as

boundary.
CS@AU Henrik Bærbak Christensen 69

Other Reliability Techniques

Testing is not the only way…

Systematic Review

• Systematic Review

– A formalized, systematic, process of people reading the code and

identifying anomalies

• Pro:

– Can find defects that no testing ever can

» Wrong comments

» Architectural flaws (‘strategy is used incorrectly here’)

– Important learning

» Learn by reviewing the code of master coders

• Con:

– Manual/human/slow/expensive

– Regression is too expensive

– Bottleneck in releasing software

CS@AU Henrik Bærbak Christensen 71

Systematic Review

• Supported by GitHub, etc

CS@AU Henrik Bærbak Christensen 72

MicroSoft embraces review

Static Analysis

• Static Analysis

– A review, but a program does it, using heuristics encoded

CS@AU Henrik Bærbak Christensen 73

Static Analysis

• Static Analysis

– Pro

• Fast and automated

• Especially suited to find security flaws

– Con

• Restricted in the types of failures it can find

– Primarily language level errors, not on architectural level

• Overload of errors

– I review many and find they are not errors but ‘as I want it’

– But they pop up every time I run the analysis => error blindness

» The one that I should have picked up drowns in all the

information…

CS@AU Henrik Bærbak Christensen 74

Formal Methods

• The biggest gun in the cupboard

• Mathematical proof that our algorithm is correct

• Much research (also here at CS), but so far (I think)

– Techniques do not scale well

– Math may be even harder to read than code

• That is, the error may be in the proof!

– Math is a model, often ignoring physical properties

• No, the Stack is not infinite! No, memory is not infinite! Etc…

CS@AU Henrik Bærbak Christensen 75

Discussion

A few key points

CS@AU Henrik Bærbak Christensen 77

Summary

• Equivalence Class Partitioning

– EC = set of input elements where each one will show same

defect as all others in the same set (representation)

– Find ECs, use Myers to generate test cases.

• Boundary analysis

– Be skeptical about values at the boundaries

– Especially on the boundary between valid and invalid ECs

CS@AU Henrik Bærbak Christensen 78

