/v

AARHUS UNIVERSITET

Software Engineering
and Architecture

Systematic Testing
Equivalence Class Partitioning

/v What is reliability?

AARHUS UNIVERSITET

Definition: Reliability (ISO 9126)

The capability of the software product to maintain a specified level of per-
formance when used under specifified conditions.

 If there is a defect, it may fail and is thus not reliable.

 Thus:
— Reduce number of defects
— ... will reduce number of failures
— ... will increase reliability

eV Discussion

AARHUS UNIVERSITET

e True?

— Find example of removing a defect does not increase the
system’s reliability at all

— Find example of removing defect 1 increase reliability
dramatically while removing defect 2 does not

/v All defects are not equal!

AARHUS UNIVERSITET

S0 — given a certain amount of time to find defects (you
need to sell things to earn money!):

« What kind of defects should you correct to get best return
on investment?

- Example

AARHUS UNIVERSITET

* Firefox has an enormous amount of possible
configurations! Imagine testing all possible combinations!

C @ Firefox aboutipreferences

@ vour browser is being managed by your organization.

General General

* Which one would you
test most thoroughly?

Home Startup

Open previous windows and tabs
Search

Always check if Firefox is your default browse:

P LB @

Privacy & Security
& Firefox is currently your default browser

Q Sync
E More from Mozilla Tabs
Ctrl+Tab cycles through tabs in recently used order
Open links in tabs instead of new windows
When you open a link, image or media in a new tab, switch to it immediately
Confirm before closing multiple tabs

Show tab previews in the Windows taskbar

Language and Appearance

Website appearance
Some websites adapt their color scheme based on your preferences. Choose which color scheme
you'd like to use for those sites.

£ Extensions & Themes © Firefox theme System theme Light Dark

® Firefox Support Manage Firefox themes in Extensions & Themes

CS@AU Henrik Baerbak Christensen 5

/v

AARHUS UNIVERSITET

Testing Techniques

CS@AU Henrik Baerbak Christensen

/v One viewpoint

AARHUS UNIVERSITET

« The probability of defects is a function of the code
complexity. Thus we may identify (at least) three different
testing approaches:

— No testing. Complexity is so low that the test code will become
more complex or longer. Example: set/get methods

— Explorative testing: “gut feeling”, experience. TDD relies heavily
on ‘making the smart test case’ but does not dictate any method.

Definition: Systematic testing

Systematic testing is a planned and systematic process with the explicit
goal of finding defects in some well-defined part of the system.

eV Destructive!

AARHUS UNIVERSITET

« Testing is a destructive process!!!

— In contrast to almost all other SW processes which are
constructive!

« Human psychology

— |want to be a success

* The brain will deliver!
— (ok, X-factor shows this is not always the case...)

| will prove my software works
* | will prove my software is really lousy

eV Morale:

AARHUS UNIVERSITET

* When testing, reprogram your brains

CS@AU Henrik Beerbak Christensen 9

VeV Our focus

AARHUS UNIVERSITET

 There are a lot of different testing techniques.

« Types: Definition: Black-box testing

The unit under test (UUT) is treated as a black box. The only knowledge
we have to guide our testing effort is the specification of the UUT and
a general knowledge of common programming techniques, algorithmic
constructs, and common mistakes made by programmers.

Definition: White-box testing

The full implementation of the unit under test is known, so the actual
code can be inspected in order to generate test cases.

* In our course — two black box technigques:
— Equivalence class partitioning (EC)
— Boundary value analysis (which is actually associated with EC)

/v

AARHUS UNIVERSITET

Equivalence Class Partitioning

Often just called EC testing...

/v Consider

AARHUS UNIVERSITET
« Math.abs(x): Absolute value of x;
— Examples: abs(-2) = 2; abs(7) = 7;

— If X is not negative, return Xx.
— If X is negative, return the negation of x.

« Wil these five test cases ensure a reliable

|mp|ementat|0n? Unit under test: Math.abs
[nput Expected output
x = 37 37
x = 38 38
x =39 39
x =40 40
x =41 41

/v

AARHUS UNIVERSITET

* A) what is the probability
that x=38 will find a
defect that x=37 did not
expose?

* B) what is the probability
that there will be a defect
In handling negative x?

Two problems

Unit under test: Math.abs

Input Expected output
x =37 37

x = 38 38

x =39 39

x =40 40

x =41 41

public static int abs(int x) | return x; |

Y Core insight

AARHUS UNIVERSITET

 We can find a single input value that represents a large
set of values when it comes to finding defects!

Definition: Equivalence class (EC)

A subset of all possible inputs to the UUT that has the property that if
one element in the subset demonstrates a defect during testing, then we
assume that all other elements in the subset will demonstrate the same
defect.

An EC is a (sub)set of all inputs.

Da: Delmangde

« S0 —we only need one test case representing that set

CS@AU Henrik Baerbak Christensen 14

/v

AARHUS UNIVERSITET

For Math.abs

« ECs are subsets of the full input set.

EC-1

EC-2

CS@AU

Unit under test: Math.abs

Input Expected output
x =37 37
T 5=

] L1

X=-42 42

Henrik Baerbak Christensen

15

eV The argumentation

AARHUS UNIVERSITET

« The specification will force an implementation where
(most likely!) all positive arguments are treated by one
code fragment and all negative arguments by another.

— Thus we only need two test cases:
« 1) one that tests the positive argument handling code
« 2) one that tests the negative argument handling code

 For 1) x=37 Is just as good as x=1232, etc. Thus we
simply select a representative element from each EC and
generate a test case based upon it.

VeV Note

AARHUS UNIVERSITET
« Systematic testing ...

« does not mean

— Systematically find all defects and guaranty none are left!!!
* If you need proofs, you need my colleagues research ©

e does mean

— Systematically derive a small set of test cases with high
probability of finding many defects!!!

/v Specifically

AARHUS UNIVERSITET

e Systematic testing cannot in any way counter malicious
programming

— Virus, easter eggs, evil-minded programmers

— (really really incompetent programmers)

/v A Sound EC partitioning

AARHUS UNIVERSITET
* For our ECs to be sound:

e Coverage: Every possible input element belongs to at least one of
the equivalence classes.

e Representation: If a defect is demonstrated on a particular mem-
ber of an equivalence class, the same defect is assumed to be
demonstrated by any other member of the class.

e EXxercise

— Why the word ‘assumed'’ in the above statement?
» Why not ‘guarantied’ ?

CS@AU Henrik Baerbak Christensen 19

/v Exercise

AARHUS UNIVERSITET
« Coverage? Representation?

EC'l EC'2

e Coverage: Every possible input element belongs to at least one of
the equivalence classes.

e Representation: If a defect is demonstrated on a particular mem-
ber of an equivalence class, the same defect is assumed to be
demonstrated by any other member of the class.

CS@AU Henrik Beerbak Christensen 20

eV Exercise

AARHUS UNIVERSITET
 The classic blunder at exams!

— Representation = two values from the same EC will result in the
same behaviour in the algorithm

« Argue why this is completely wrong!

— Consider for instance the Account class’ deposit method...
« account.deposit(100);
 account.deposit(1000000);

/v SideBar

AARHUS UNIVERSITET
« Open.kattis // Exercise International Dates

DATE PROBLEM JUDGEMENT RUNTIME LANGUAGE TEST CASES
20:05:30 International Dates ° Accepted 0.09s Java 109/109
0000 0000 00 o0

° 109 test cases for public static String classifyFormat(String dateString) {
. . String parts[] = dateString.split(regex: "/"};
flve Ilnes Of COde??? int pl = Integer.paorseInt(parts[8]);
. int p2 = Integer.porseInt(parts[1]);
¢ My analyS|S: // US MM/DD - boil out if DD > 12
. if (p2 > 12) return "US";
— 3testcases s enough! // EU DD/MM - bail out if DD > 12
EC Covered TestCase Expected if (pl > 12) return "EU";
e T return "either";
[p1][f2)[s1] 13/07/1963 EU +
[02][f1)[s52] 68/13/2827 s
[03]1[f1]1[s1] 12/12/1987 either

CS@AU Henrik Beerbak Christensen 22

/v

Documenting ECs
AARHUS UNIVERSITET

« Math.abs is simple. Thus the ECs are simple.

« This is often not the case! Finding ECs requires deep
thinking, analysis, and iteration.

Label the EC
 Document them! —
 Equivalence class table:

Condition Invalid ECs | Valid ECs
absolute value of x - r > 0]al]
r < 0[a2]

CS@AU Henrik Baerbak Christensen 23

eV Invalid/Valid ECs

AARHUS UNIVERSITET
« Some input values make an algorithm give up, balil out,

throw exception, or compute answer immediatelv:
— file.open(“nonexisingfile”);

— game.usePower(FINDUS) (and findus mana =0)

* Input values that leads to abnormal processing/bail out,
we classify as belonging to invalid ECs.

* Those input values that process normally/all the way, we

say belong to valid ECs.
— Those cases where the ‘method is run to conclusion’

/v

AARHUS UNIVERSITET

Finding the ECs

Often tricky...

Y Reality

AARHUS UNIVERSITET

Example: Backgammon move validation
— validity =v (move, player, board-state, die-
value)

* is Red move (B1-B2) valid on this board given
these die values and this player in turn?

— Problem: '
« multiple parameters: player, move,
board, die

« complex parameters: board state
 coupled parameters: die couples to move! | ‘ ‘

— EC boundary is not a constant!

CS@AU Henrik Baerbak Christensen 26

/v A process

AARHUS UNIVERSITET

« To find the ECs you will need to look carefully at the
specification and especially all the conditions
associated.

— Conditions express choices in our algorithms and therefore
typically defines disjoint algorithm parts!

 If (expr) felse {} |

— And as the test cases should at least run through all parts of the
algorithms, it defines the boundaries for the ECs.

* ... And consider typical programming techniques
— Will a program contain if’'s and while’'s here?

eV Partitioning Heuristics

AARHUS UNIVERSITET

« 1) If you have a range of values specification
— make three ECs:

« [1] in range valid
» [2] above range invalid
 [3] below range invalid

Chess Board Numbers

Chess board square

« Ex. Standard chess notation/ is “a8” or “x17” & zwmams iz

] ., . 7 377] hite's perspective, the
valid positions? 0. 0.0 0.
4 [t [y cu P et R o4 B coch sauore aisogets o
— Column range: a-h; Row range: 1-8 BB
1B ¢ e tup are “
- . : abcdefgh oo in
Condition Invalid ECs Valid ECs T wtewnsetupanthe S ohermon
= = bottom of the board
Column <’a’ [al]; >'h’" [a2] | "a’-"h’ [a3]
Row <1 [b1];> 8 [b2] 1-8 [b3]

CS@AU HenrikBeerbak-Christensen 28

eV Partitioning Heuristics

AARHUS UNIVERSITET

« 2) If you have a set, S, of values specification

— make |S|+1 ECs

« [1] .. [|S]] one EC for each memberin S valid
— Each with only that particular member in the set

* [|S|+1 for a value outside S invalid

« EX. PayStation accepting coins
— Set of {5, 10, 25} cents coins

Condition Invalid ECs Valid ECs
Allowed coins | € {5,10,25}[al] | {5}[a2]; {10}]a3]; {25}]a4]

— Note: Not just two sets!

eV Partitioning Heuristics

AARHUS UNIVERSITET

« 3) If you have a boolean condition specification

— make two ECs

 EXx. the first character of identifier must be a letter

Condition

Invalid ECs

Valid ECs

Initial character of identifier

non-letter [al]

letter [a2]

* the object reference must not be null

— you get it, right? ©

eV Partitioning Heuristics

AARHUS UNIVERSITET

* 4) If you question the representation property of any EC,
then repartition!

— Split EC into smaller ECs

« Examples: shortly ©

/v

AARHUS UNIVERSITET

From ECs to Test cases

eV Test case generation

AARHUS UNIVERSITET

« For disjoint ECs you simply pick an element from each
EC to make a test case.

* Document in a Extended test case table

ECs covered | Test case | Expected output

[a]] r = 201 201
[a2] \\Q: —87 +87

* Augmented with a column showing whi
covered! G | Valid ECs

absolute value of x - x > 0[al]
x < 0[a2]

CS@AU Henrik Baerbak Christensen 33

/v

AARHUS UNIVERSITET

 ECs are seldom disjoint — so you have to combine them
to generate test cases.

 EX. Chess board validation

Usual case

Condition | Invalid ECs | Valid ECs
Column <'a’ [al]; >"'h" [a2] | "a’-"h’ [a3]
Row <1 [b1]; > 8 [b2] 1-8 [b3]

CS@AU

Henrik Baerbak Christensen

ECs covered | Test case | Expected output
[al], [b1] ("’,0) illegal
[a2], [b1] ("1',-2) illegal
la3], [b1] ("e’,0) illegal
[al], [b2] ("",9) illegal
[a2], [b2] ('i’,9) illegal
[a3], [b2] ("f',12) illegal
lal], [b3] ("",4) illegal
[a2], [b3] ('1,5) illegal
la3], [b3] ('b’,6) legal

34

/v Combinatorial Explosion

AARHUS UNIVERSITET
« Umph! Combinatorial explosion of test cases ®.

e EX.

— Three independent input parameters foo(x,y,z)

— Four ECs for each parameter

« Thatis:
— X’s input set divided into four ECs,
— y's input set divided into four ECs,

* etc.

e Question:
— How many test cases?

/v

AARHUS UNIVERSITET
« Answer: 43 = 64 test cases...

Combinatorial Explosion

TC1:
TC2:
TCA4:
TCS:
TCO:

ECx1]
ECx1]
ECx1]
ECx1]
ECx1]

ECy1]
ECy1’
ECy1]
ECy2]

ECy3]

ECz1

ECz2] ...
ECz4] ...
ECz1] ...

ECz1] ...

:I'-é364: [ECx4],[ECy4],[ECz4]

/v Myers’ Heuristics

AARHUS UNIVERSITET
« Often, It Iis better to generate test cases like this:

1. Until all valid ECs have been covered, define a test case that covers as manv
uncovered valid ECs as possible.

2. Until all invalid ECs have been covered, define a test case whose element only
lies in a single invalid ECs.

Condition | Invalid ECs | Valid ECs
Column <’a’ [al]; >"h" [a2] | "a’~"h’ [a3]

Row <1[p1;>8p2] | 1-8[b3

ECs covered | Testcase | Expected output

[al], [b3] ("",5) illegal

[a2], [b3] ('i,3) illegal

Rule 2 [a3], [b1] ('b’,0) illegal
[a3], [b2] ('c’,9) illegal
Rule 1 _ : b’

. ue1 | [a3], [b3] (b’,6) legal N

/v Why Rule 2?

AARHUS UNIVERSITET

* Due to masking
— One correct test masks a later incorrect test

e EX.

public class ChessBoard |
public boolean wvalid(char column, int row) |
if (column < "a”) | return false; |}
if ((row <0) | return false; |}
return true ;

|

1
assertThat(b.valid(“ *,0)), is(false)); &

« Test case (‘' ‘,0) will pass which is expected

— Code deemed correct, but this is a wrong conclusion!

* |t was the ‘column’ test that returned ‘false’ so the defect in the row

conditions is masked
CS@AU Henrik Baerbak Christensen 38

/v Why Rule 17

AARHUS UNIVERSITET

* You may combine as many valid ECs as possible and
cover it with only a single test case until all valid ECs are
exhausted...

¢ Why?

 Because | must assume that all elements from ECs are
used to compute the final result. Any defects will thus
most likely show up even if the defect only relate to one

element. Jan=1;: Feb=2

« EX. bankdayNumberinYear(int month, int day)
— return 30*month+day

CS@AU Henrik Baerbak Christensen 39

/v

AARHUS UNIVERSITET

The Process

The Summary

/v

Revisited...

AARHUS UNIVERSITET

1.

2

Review the requirements for the UUT and identify conditions and use the heuris-
tics to find ECs for each condition. ECs are best written down in an equivalence
class table.

. Review the produced ECs and consider carefully the representation property of

elements in each EC. If you question if particular elements are really represen-
tative then repartition the EC.

. Review to \-'erify that the coverage property is fulfilled.

Generate test cases from the ECs. You can often use Myers heuristics for com-
bination to generate a minimal set of test cases. Test cases are best documented
using a test case table.

5. Review the generated test cases carefully to find what you missed
— and iterate!

CS@AU

Henrik Baerbak Christensen

41

/v

AARHUS UNIVERSITET

An Example

Phew — let’'s see things in practice

/v

AARHUS UNIVERSITET

Example

public interface weekday {

J*¥* caleoulate the weekday of the lst day of the given menth.

@param year the year as integer. 2000 means year 2000 ete. Only
vears in the range 1900-2000 are walid. The output is undefined
for vears cutside this range.

@param month the month as integer. 1 means January,
December. Values outside the range 1-12 are illegal.
@return the weekday of the lst day of the month. 0 means Sundayv,
1 means Monday etec. up til & meaning Saturday.

12 means

*/
puklic int weekday (int year, int month)
throws IllegalfrqumentException;

CS@AU Henrik Baerbak Christensen 43

/v

AARHUS UNIVERSITET
« Which heuristics to use on the spec?

Exercise

e Range: If a condition is specified as a range of values, select one valid EC that covers
the allowed range, and two invalid ECs, one above and one below the end of
the range.

o Set: If a condition is specified as a set of values then define an EC for each value in
the set and one EC containing all elements outside the set.

e Boolean: If a condition is specified as a “must be” condition then define one EC for
the condition being true and one EC for the condition being false.

CS@AU Henrik Baerbak Christensen 44

/v Process step 1

AARHUS UNIVERSITET
 Result
Condition Invalid ECs Valid ECs
year < 1900 [y1]; > 3000 [y2] | 1900 — 3000 [y3]
month < 1 [ml]; > 12 [m2] 1 —12 [m3]

CS@AU Henrik Baerbak Christensen 45

/v Process step 2

AARHUS UNIVERSITET
* Review and consider representation property?

Condition Invalhid ECs Valid ECs
year < 1900 [y1]; > 3000 [y2] | 1900 — 3000 [y3]
month < 1 [ml]; > 12 [m2] 1 —12 [m3]

CS@AU Henrik Baerbak Christensen 46

/v Damn — Leap years!

AARHUS UNIVERSITET
 Nice to be an astronomer ©
Condition | Invalid ECs Valid ECs
year (y) {y|y € [1900; 3000] A y%400 = 0} [y3a]

{yly € [1900;3000] A y%100 = 0 Ay & [y3a]} [y3b]
{yly € [1900; 3000] A y%4 = 0 Ay & [y3a] U [y3b]} [y3c]
{y|y € [1900; 3000] A y%4 # 0} [y3d]

« What about the months? Let’s play it safe...

Condition | Invalid ECs Valid ECs
month 1 — 2 [m3al; 3 — 12 [m3b]

CS@AU Henrik Baerbak Christensen 47

Y Process step 3

AARHUS UNIVERSITET
 Coverage?
Condition | Invalid ECs Valid ECs
year (y) {y|y € [1900; 3000] A y%400 = 0} [y3a]
{yly € [1900;3000] A y%100 = 0 Ay & [y3a]} [y3b)
{yly € [1900; 3000] A y%4 =0 Ay & [y3al U [y3b]} [y3c]
{y|y € [1900; 3000] A y%4 # 0} [y3d]

Condition | Invalid ECs Valid ECs
month 1 — 2 [m3al; 3 — 12 [m3b]

CS@AU Henrik Baerbak Christensen 48

/v

AARHUS UNIVERSITET
« Generate, using Myers rule 1 and rule 2

ECs covered

Test case

Process step 4

EXPE(. Condition | Invalid ECs | Valid ECs

year (y) {yly € [1900; 3000] A y%400 = 0} [y3a]

y3al, [m3a
y3b], [m3b]
y3c], [m3b]
y3d], [m3a
y1], [m3b]
2], [m3b]
ml], [-_de}I
'm?2|, [y3c]

y = 2000;m = 2
y=1900;:m =5
y = 2004;m = 10
y=1985:m =1
y=1844:m =4
y=4231:m =8
y=2003:m =20
y = 2004;m =13

{yly € [1900:3000] A y%100 = 0 Ay & [y3a]} [y3D]
{yly € [1900; 3000] A y%4 = 0 Ay & [y3a] U [y3b]} [y3c]
{yly € [1900;3000] A 474 # 0} [y3d]

5
Condition | Invalid ECs | Valid ECs

- month ‘ ‘ 1 — 2 [m3al; 3 — 12 [m3Db]
[exception]
[exception]

H Condition | Invalid ECs | Valid ECs

[E‘XC‘E‘P 101‘1] year < 1900 [y1]; > 3000 [y2] | 1900 — 3000 [y3]
[EXCEPtIOI'l] mont'h < 1 [ml]; > 12 [m2] 1—12[m3]

« Conclusion: Only 8 test cases for a rather tricky alg.

CS@AU

Henrik Baerbak Christensen 49

/v

AARHUS UNIVERSITET

Example 2

/v

Formatting
AARHUS UNIVERSITET

/% format a string representing of a double. The string is always
6 characters wide and in the form ###.##, that is the double is
rounded to 2 digit precision. Numbers smaller than 100 have ‘0
prefix. Example: 123 —> '123.00°; 2,3476 —> '002.35" etc. If the
number i1s larger or equal to 999.995 then ’'sxx.xx" is output to
signal overflow. All negative values are signaled with ' '

*/
public String format(double x);

* Note! Most of the conditions do not really talk about x but
on the output.

 Remember: Conditions in the specs!!!

CS@AU Henrik Baerbak Christensen 51

/v

AARHUS UNIVERSITET
« What do we do?

/*x format a string representing of a double. The string is always
6 characters wide and in the form ###.##, that is the double is
rounded to 2 digit precision. Numbers smaller than 100 have 0
prefix. Example: 123 —> '123.00°; 2,3476 — '002.35" etc. If the
number is larger or equal to 999.995 then ’xxx*.xx" is output to
signal overflow. All negative values are signaled with "———.——'

Exercise

*/
public String format(double x);

« Range? Boolean? Set?
« Valid / Invalid ECs?

CS@AU Henrik Baerbak Christensen 52

/v

AARHUS UNIVERSITET

Condition

Invalid ECs

My analysis

Valid ECs

overflow / underflow
2 digit rounding

prefix

output suffix

> 1000.0 [a1]; < 0.0 [a2]

0.0 <=x<1000.0 [a3]
(,00x round up) [b1];

(,00x round down) [b2]
no "0 prefix [cl]
exact ‘0" prefix [c2]
exact "00” prefix [¢3]
exact "000" prefix [c4]
"yx" suffix (z # 0)[d1]
" x0" suffix (z # 0)[d2]

exact ".00" suffix [d3]

CS@AU

Henrik Baerbak Christensen

set

/v

AARHUS UNIVERSITET

CS@AU

Test cases

Condition

ECs covered | Test case ExPected output
lal] 1234.456 T
[a2] -0.1 —
[b1], [el], [d1] 212.738 21274
[b2], [¢2], [d2] 32.503 '032.50°
[b1], [¢3], [d3] 7.995 "008.00°
[62], [e4], [d1] 0.933 '000.93
| Invalid ECs | Valid ECs

overflow / underflow
2 digit rounding

output suffix

> 1000.0 [al]; < 0.0 [a2]

(,00x round up) [b1];
(,00x round down) [52]
no ‘0" prefix [c1]
exact '0” prefix [c2]
exact '00” prefix [c3]
exact ‘000" prefix [c4]
"yx’ suffix (z # 0)[d1]
X0 suftix (z
exact ".00" suffix [d3]

£ 0)[a2]

Henrik Baerbak Christensen

54

/v

AARHUS UNIVERSITET

Condition | Invalid ECs |

Process Recap

1. Until all valid ECs have been covered, define a test case that covers ¢
uncovered valid ECs as possible.

Valid 2 Until all invalid ECs have been covered, define a test case whose eleme

overflow / underflow
2 digit rounding

> 1000.0 [aldgs 0.0 [a2]

prefix

output suffix

.yx’ suffix
" X0 suffix (=

(o0xround li€S in a single invalid ECs.

(,00x round down) |b2]

no ‘0" prefix [c1]
act 0" prefix [c2]
‘00" prefix [c3]
" prefix [c4]
0)/dl]
2]

exact

exact ".00" suffix

CS@AU

ECs covered | Test case | Expected output
all 1234.456 AR

[a2] -0.1 —

[b1], [el], [d1] | 212.738 21274

[b2], [¢2], [d2] 32.503 '032.50"
[b1], [¢3], [d3] 7.995 ‘008.007
[62], [e4], [d1] 0.933 '000.93’

Henrik Baerbak Christensen 55

/v

AARHUS UNIVERSITET

Condition | Invalid ECs

Process Recap

1. Until all valid ECs have been covered, define a test case that covers ¢

uncovered valid ECs as possible.

Valid 2

overflow / underflow
2 digit rounding

> 10000 [a1]; < 0.0

prefix

output suffix

[

“yx’ suffix (:
" X0 suffix (=

(o0xround li€S in a single invalid ECs.

0x round down) |b2]

CS@AU

Until all invalid ECs have been covered, define a test case whose elemc

ExPected output

ECs covered | Test case
[al] 1234.456
12| -0.1
[b1], [el], [d1] | 212.738
[b2], [¢2], [d2] 32.503
[b1], [¢3], [d3] 7.995
[62], [e4], [d1] 0.933

ekt s

¥ ¥

21274
'032.507

"008.00"
'000.93’

Henrik Baerbak Christensen

56

/v

AARHUS UNIVERSITET

Process Recap

1. Until all valid ECs have been covered, define a test case that covers ¢
uncovered valid ECs as possible.

Until all invalid ECs have been cover§d, define a test case whose elemc

lies in a single invalid ECs.

Valid ECs

Condition \ Invalid ECs
overflow / underflow | > 1000.0 [a1]; < 0.0 [a2]
2 digit rounding

prefix

output suffix

(,00x round up) [b1];
(,00x round down) [b2
no 0" prefix [c1]
exact "0 prefix [c2]
exact "00" prefix [e3]

CS@AU

’ij(;cstl;?g»e’(gr:ig)[f:ﬂ ECs covered | Test case | Expected output
X0 suffix (z # 0)[d2
exact ".00" suffix [d3] 1234456 ;:(.:q.:q.-:{.:[.;
-0.1 — -
|, [el], [d1] 212.738 21274
[b2], [¢2], [d2] 32.503 ‘032.507
[b1], [¢3], [d3] 7.995 "008.007
[62], [e4], [d1] 0.933 '000.937

Henrik Baerbak Christensen 57

/v Process Recap

AARHUS UNIVERSITET

1. Until all valid ECs have been covered, define a test case that covers ¢
uncovered valid ECs as possible.

2. Until all invalid ECs have been covergd, define a test case whose elems
lies in a single invalid ECs.

Condition \ Invalid ECs \ Valid ECs

overflow / underflow | > 1000.0 [a1]; < 0.0 [a2]

2 digit rounding (,00x round up) [b1];
(,00x round down) [b2]

prefix no 0" prefix [c1]

exact "0 prefix [c2]
exact "00" prefix [e3]

output suffix ’ii?’cstl;?gg(grfg)[f:ﬂ] ECs covered | Test case | Expected output

X0 suffix (z # 0)[d2

exact ".00" suffix [d3] [{1 1] 1234456 he:e:e_:faw

-0.1 — -

Nl d1] 212.738 21274

c2], [d2] 32.503 ‘032.507

[b1], [¢3], [d3] 7.995 "008.007

[62], [e4], [d1] 0.933 '000.937

CS@AU Henrik Baerbak Christensen 58

/v Process Recap

AARHUS UNIVERSITET

1. Until all valid ECs have been covered, define a test case that covers ¢
uncovered valid ECs as possible.

2. Until all invalid ECs have been covergd, define a test case whose elems
lies in a single invalid ECs.

Condition \ Invalid ECs \ Valid ECs

overflow / underflow | > 1000.0 [a1]; < 0.0 [a2]

2 digit rounding (,00x round up) [b1];
(,00x round down) [b2]

prefix no 0" prefix [c1]

exact "0 prefix [c2]
exact "00" prefix [e3]

output suffix ’ii?’cstl;?ggérfg)[f:ﬂ] ECs covered | Test case | Expected output

X0’ suffix (z £ 0)[d2]

exact ".00" suffix [d3] 1 234456 ¥ !t-!t—!t-- EE

-0.1 — -

[cl], [d1] 212.738 21274

d2] 32.503 ‘032.507

3], [d3] 7.995 "008.007

[62], [e4], [d1] 0.933 '000.937

CS@AU Henrik Baerbak Christensen 59

/v Process Recap

AARHUS UNIVERSITET

1. Until all valid ECs have been covered, define a test case that covers ¢
uncovered valid ECs as possible.

2. Until all invalid ECs have been covergd, define a test case whose elems
lies in a single invalid ECs.

Condition \ Invalid ECs \ Valid ECs

overflow / underflow | > 1000.0 [a1]; < 0.0 [a2]

2 digit rounding (,00x round up) [b1];
(,00x round down) [b2]

prefix no 0" prefix [c1]

exact "0 prefix [c2]
exact "00" prefix [e3]
exact ‘000" prefix [c4
output suffix "yx” suffix (z # 0
" X0 suffix (z # 0)]
exact ".00" suffix [d3]

ECs covered | Test case | Expected output
[al] 1234.456 e

[a2] 0.1 —
212.738 21274’

|, [c1], [d1]
c2],[d2] | 32.503 '032.50/
MJd3] | 7.995 '008.00"
2], [c4], [d1] | 0.933 /000.93"

CS@AU Henrik Baerbak Christensen 60

/‘Often, Alternative Analysis Possible

AARHUS UNIVERSITET
| used ‘set’ heuristics to divided the ‘prefixed 0" ECs
A range heuristics could be applied just as well

— Condition
* Whole part of decimal number X, let call it w
— Intervals
* win [100..999] [b1]
« win [10..99] [b2]
« win|[l..9] [b3]
 wis [0] [b4]

(Note: all these are VALID ECs)
Will lead to the exact same test cases...

/v

AARHUS UNIVERSITET

Computations

“Code without if’'s”
... also requires some care

/v Computation Heuristics

AARHUS UNIVERSITET
« Computations have their own pitfalls: 0 and 1

If the specification of the unit under test defines an arithmetic computa-
tion, then

e Addition and subtraction: If a computation includes addition or sub-
traction, select one valid EC for the neutral element 0, and one valid
EC for all other elements.

e Multiplication and division: If a computation includes multiplication
or division, select one valid EC for the neutral element 1, and one
valid EC for all other elements.

CS@AU Henrik Baerbak Christensen

63

o Example

AARHUS UNIVERSITET
« Specification:

[/ return axx + b
public double linearFunction(double a, double x, double b) |
return a*x + b;

}

« But: No conditions =>
— Myers analysis will give only one test case =>
« Couldjustbea=x=b =0

 Thus will not detect that the function below is wrong!

[/ return axx + b
public double linearFunction(double a, double x, double b) |
return 0.0:

}

CS@AU Henrik Baerbak Christensen 64

/v

AARHUS UNIVERSITET
« Specification:

[/ return axx + b
public double linearFunction(double a, double x, double b) |
return a*x + b;

]

e Our computation

heuristics thus leads to:

Condition

Invalid ECs

Valj

Example

If the specification of the unit under test defines an arithmetic computa-
tion, then

e Addition and subtraction: If a computation includes addition or sub-
traction, select one valid EC for the neutral element 0, and one valid
EC for all other elements.

o Multiplication and division: If a computation includes multiplication
or division, select one valid EC for the neutral element 1, and one
valid EC for all other elements.

multiplication (a*x)

addition (+b)

a=1[al;al=1[a2]
x=1[aY;x!=1 [ad]
b=0[pl;b'=0[b2]

Note: the neutral

element ECs need not

\,

be tested at all!

« Testcase: a=7; x= 3; b=9 => output = 30.

CS@AU

Henrik Baerbak Christensen 65

/v Computation Heuristics

AARHUS UNIVERSITET
« Example/Hint — SigmaStone attacks with field support

The resulting attack strength of a minion is the attack value of the minion itself,
and to this value is added field support: +1 for each friendly fielded minion of
the same class (and only them) up to a maximum of 4, and finally is added boosts

« +1 for every friendly minion of same class
— Range [0..4] +>=5
— Implementation 1:
» Value = attackStrength + sumOfFriendlyOfSameClass();
— Implementation 2:
« Value = attackStrength; // missed the summation here

* Picking O as representative element is problematic!

CS@AU Henrik Baerbak Christensen

66

/v

AARHUS UNIVERSITET

Boundary value analysis

CS@AU Henrik Baerbak Christensen

67

/v Boundary value analysis

AARHUS UNIVERSITET

« EXperience shows that test cases focusing on boundary
conditions have high payoff.

« Some that spring into my mind are

— "off by one” errors in comparisons
« if (x<=MAX_SIZE) and not if (x < MAX_SIZE)

— null as value for a reference/pointer

/v Complements EP analysis

AARHUS UNIVERSITET

Detfinition: Boundary value

A boundary value is an element that lies right on or next to the edge of
an equivalence class.

« EX. Formatting has a strong boundary between
EC [al] and [aZ]
— 0.0 (> ‘000.00’) and -0.000001 (-> ‘---.--")

 Itis thus very interesting to test x=0.0 as
boundary.

/v

AARHUS UNIVERSITET

Other Reliability Techniques

Testing is not the only way...

Y Systematic Review

AARHUS UNIVERSITET

e Systematic Review

— Aformalized, systematic, process of people reading the code and
identifying anomalies
* Pro:
— Can find defects that no testing ever can
» Wrong comments
» Architectural flaws (‘strategy is used incorrectly here’)
— Important learning
» Learn by reviewing the code of master coders
« Con:
— Manual/human/slow/expensive
— Regression is too expensive
— Bottleneck in releasing software

Y o Systematic Review

AARHUS UNIVERSITET
« Supported by GitHub, etc

B= Compare master ¥ and latestversion v [A 5 files +70 -22 3~

~v W src/mainfjava/paystation/domain/StandardPayStationjava [f

1 Show unchanged lines

private int insertedSoFar;
private int timeBought;
+ private RateStrategy rateStrategy;

public StandardPayStation() {

clearMe();
11 | + rateStrategy = new LinearRateStrategy();
E Pending Henrik Barbak Christensen @baerbak g U
>

You should introduce constructor injection, instead of this hardcoding of the delegate
strategy.

Add comment now

MicroSoft embraces review

CS@AU Henrik Baerbak Christensen 72

/v Static Analysis

AARHUS UNIVERSITET

« Static Analysis

— Areview, but a program does it, using heuristics encoded
=

File Edit View Navigate godeﬂefactor Build Run Tools
paystation-facade src main j Inspect Code..
Code Cleanu
Silent Code Clea
Run Inspection by Na

Project «

~ 'L paystation-facade ~/proj/

I 1: Project

’ IgraCle ra =1 a A
3 idea = gure Current rite A
o > build View Offline Inspection Results?
g > mgradle I LT ¥ Java 2 errors
5 I Infer Annotations...
@ > Mlocallib : > Code style issues
= v src Dependencies...
- ~ [z main Backward Dependencies... > Data Flow
A ja\fa Mﬂdule Dependencies... » Declaratinn redundancy
~ [paystation Cyclic Dependencies...
Imports
~ Java language level migration aids
» Java s>
~ Java B

¥ Anonymous type can be replaced with lambda

v &k PayStationGUI
Anonymous new ActionListener() can be replaced with lambda

CS@AU Henrik Baerbak Christensen 73

/v Static Analysis

AARHUS UNIVERSITET
« Static Analysis
— Pro

« Fast and automated
» Especially suited to find security flaws

— Con

» Restricted in the types of failures it can find
— Primarily language level errors, not on architectural level

» Overload of errors
— | review many and find they are not errors but ‘as | want it’
— But they pop up every time | run the analysis => error blindness

» The one that | should have picked up drowns in all the
information...

V4V Formal Methods

AARHUS UNIVERSITET
« The biggest gun in the cupboard

« Mathematical proof that our algorithm is correct

* Much research (also here at CS), but so far (I think)
— Techniques do not scale well

— Math may be even harder to read than code
« That s, the error may be in the proof!
— Math is a model, often ignoring physical properties
* No, the Stack is not infinite! No, memory is not infinite! Etc...

/v

AARHUS UNIVERSITET

Discussion

ot A few key points

AARHUS UNIVERSITET

Key Point: Observe unit preconditions

Do not generate ECs and test cases for conditions that a unit specifically cannot
or should not handle.

Key Point: Systematic testing assumes competent programmers

Equivalence partitioning and other testing techniques rely on honest and compe-
tent programmers that are using standard techniques.

Key Point: Do not use Myers combination heuristics blindly

Myers heuristics for generating test cases from valid and invalid ECs can lead to
omitting important test cases.

CS@AU Henrik Baerbak Christensen

77

Y Summary

AARHUS UNIVERSITET

« Equivalence Class Partitioning

— EC = set of input elements where each one will show same
defect as all others in the same set (representation)

— Find ECs, use Myers to generate test cases.

« Boundary analysis
— Be skeptical about values at the boundaries
— Especially on the boundary between valid and invalid ECs

